Green Infrastructures: a sustainable management approach F. Ferrini and Alessio Fini

Presentation layout:

General introduction

Some research results

There are and the

The sustainable approach to manage "the green" in green infrastructures

Design: focused on plant needs and on site potentiality

Contract: All details must be specified in order to meet plant requirements

Site preparation: To ensure that site conditions are appropriate for the plants

Tree supply: Plant material must be of the highest quality possible (morphological, physiological and phytosanitary) and to have the right fitness (in biology "The extent to which an organism is adapted to or able to produce offspring in a particular environment")

Planting: to ensure that all the necessary interventions are provided before, during and after planting

Establishment: to anticipate the typical problems of the urban environment like water scarcity, weed competition and man damages

> Maintenance: keep on caring trees for the time need according to plant material type and "don't think that once planted trees can live on their own"

> Monitoring: monitoring trees for an early detection of stress and diseases

Green Infrastructures

To allow trees to be long-living

To provide benefits

Sustainable management

1) Choice of planting material

2) Best management Pratices 3) Planning the renewal

1) Choice of planting material

Plasticity: how species are adaptable to a wide range of environmental conditions

- Temperature
- Soil humidity
- Pollution tolerance
- Waterlogging
- Drought

Trees to be used in green infrastructures

Ecological resilience: the capacity to maintain its functions after environmental disturbance

Structural diversity: describes the spatial complexity offered by plant shape and is generally applied to a set of plants, rather than to an individual. The diversity of physical or architectural form within a set of plants produces structural diversity.

Strategies to reduce infrastructures damage potential by plants

Infrastructures

https://it.pinterest.com/pin/277745501992095823/

Are the strategies preventive, remedial or both? (readapted from Costello and Jones, 2003)

Strategy	Preventive	Remedial
	Tree based	
Species selection	$\overline{\mathbf{A}}$	
Root pruning		$\overline{\checkmark}$
	Infrastructure-based, Desig	n
Bigger planting space	$\overline{\mathbf{A}}$	$\overline{\checkmark}$
Curving sidewalk		
Pop-outs	\square	\checkmark
Nonstandard slab size		\square
Monolithic sidewalks	$\overline{\mathbf{A}}$	\checkmark
Increase right-of-way	$\overline{\mathbf{A}}$	\square
Eliminate sidewalk	$\overline{\mathbf{A}}$	\square
Tree islands	\square	
Narrower street	$\overline{\mathbf{A}}$	\square
Bridging	$\overline{\mathbf{A}}$	\square
Lowered sites		
Modified grave layer		

Are the strategies preventive, remedial or both? (readapted from Costello and Jones, 2003)

Strategy	Preventive	Remedial				
Infrastructure-based, Materials						
Reinforced slab	\checkmark					
Thicker slab	\checkmark					
Expansion joints	\checkmark					
Pervious concrete	\checkmark					
Asphalt	\checkmark					
Decomposed granite	\checkmark					
Compacted gravel	\checkmark					
Pavers	\checkmark					
Recycled rubber	\checkmark					
Grind edge		\square				
Ramps or wedges		\square				
Mudjacking						

Are the strategies preventive, remedial or both? (readapted from Costello and Jones, 2003)

Strategy	Preventive	Remedial
	Root zone based	
Root barriers		\checkmark
Continuous trenches		
Root paths		
Steel plates		
Foam underlay		
Structural soils		
Soil Modifications		
Water management		\checkmark

Conflicts bewteen trees and infrastucture: species selection can be a really important factor

Species reported to form surface roots or cause damage to infrastructures. Source information are listed, but methods used to evaluate species for rooting characteristics are not consistent among sources (readapted from Costello and Jones, 2003)

Species	Common name	Source
Acer platanoides	Norway maple	Gilman, 1997
Acer rubrum	Red Maple	Gilman, 1997; Rindels, 1995; Fraedrich, 1995
Acer saccharinum	Silver Maple	Rindels, 1995; Reimer and Mark, 2001; Lesser, 2001; Kopinga, 1994
Aesculus hippocastanum	Horsechestnut	Reimer and Mark, 2001
Ailanthus altissima	Tree of heaven	Gilman, 1997
Betula pendula	European white birch	Koping, 1994
Celtis australis	European hackberry	Coate, 1990
Cinnamomum camphora	Camphor tree	Gilman, 1997; Reimer and Mark, 2001; Lesser, 2001; Sealana, 1994; Fraedrich, 1995
Fagus sylvatica	European Beech	Reimer and Mark, 2001
Ficus spp	Fig species	Gilman, 1997; McPherson et al., 2000
Fraxinus spp	Ash	Gilman, 1997; Rindels, 1995; Fraedrich, 1995
Gleditsia triachanthos	Honeylocust	Gilman, 1997
Juglans spp.	Walnut species	Gilman, 1997
Liquidambar styraciflua	Sweetgum	Rindels, 1995; Wagar and Barker, 1983; Lesser, 2001; Sealana, 1994; McPherson et al., 2000; Fraedrich, 1995
Liriodendron tulipifera	Tulip tree	Rindels, 1995; Fraedrich, 1995
Magnolia grandiflora	Southern magnolia	Wagar and Barker, 1983; Reimer and Mark, 2001; Lesser, 2001; McPherson et I. 2000
Morus alba	White Mulberry	Wagar and Barker, 1983;

•••••

Species reported to form surface roots or cause damage to infrastructures. Source information are listed, but methods used to evaluate species for rooting characteristics are not consistent among sources (readapted from Costello and Jones, 2003)

Species	Common name	Source
Pawlonia tomentosa	Princess tree	Gilman, 1997
Pinus pinea	Italian stone pine	McPherson et l. 2000
Pinus sylvestris	Scots pine	Kopinga, 1994
Platanus x acerifolia	London plane	Wagar and Barker, 1983; Reimer and Mark, 2001
Pterocarya spp.	Wingnut	Gilman, 1997; Ferrini, 2008.
Quercus spp	Oak	Gilman, 1997;
Quercus ilex	Holly oak	Lesser, 2001
Robinia pseudoacacia	Black locust	Gilman, 1997; Reimer and Mark, 2001; Kopinga, 1994
Salix spp.	Willow	Gilman 1997; Rindels, 1995; Reimer and Mark, 2001; Lesser, 2001; Kopinga, 1994; Fraedrich, 1995
Schinus molle	California pepper	Reimer and Mark, 2001;
Ulmus spp.	Elm	Gilman 1997; Rindels, 1995; Reimer and Mark, 2001; Lesser, 2001; Kopinga, 1994; Fraedrich, 1995
Zelkova serrata	Sawleaf zelkova	Coate, 1990; Sealana, 1994

Indicative list of some common street trees in Europe of first size (height > 12 m) and the frequency in which damage to pavements is observed in the Netherlands (indications between brackets are based on statistically low level of observations and must be regarded as provisional) (from Kopinga, 2007, in AAVV, 2007, modified)

ſ	Species	Frequent	Occasional	Rare	Species	Frequent	Occasional	Rare
	Acer platanoides			x	Pinus pinea and P. sylvestris	x		
	Acer pseudoplatanus		х		Platanus acerifolia		х	
I	Acer saccharinum	x			Populus alba	х		
	Aesculus hippocastanum			x	Populus nigra	x		
	Ailanthus altissima		(x)		Populus simonii		(x)	
	Betula spp.	x			Populus spp.	x		
	Carpinus betulus			х	Quercus robur			х
	Catalpa spp.		(x)		Quercus rubra		x	
	Celtis spp.		(x)		Quercus palustris		x	
	Corylus colurna			х	Robinia pseudoacacia	X		
I	Fagus sylvatica			x	Salix alba	x		
	Fraxinus excelsior		Х		Sophora japonica		(x)	
	Gledisia triacanthos		x		Sorbus spp.			х
	Juglans nigra			x	Tilia spp.			x
	Pauwlonia tomentosa		(x)		Ulmus spp.		x *	

*Also depending on the type of rootstocks

Cost consequences of placing trees close to sewage pipes (choice of placement, root barrier, etc.)(After Orvesten and Stal, 2003)

Arrow illustrates postponement of costs in time. Pipe lifetime shown with a vertical double line

Stormwater Tree

Stormwater Tree Trench

Corner Bump-out

City of Philadelphia Green Street Design Manual (2014)

2) Best management practices Research on trees and green infrastructures

Effects of root severance by excavation on growth, physiology and stability of two urban tree species: results from a long-term experiment

- Construction activities and trenching near trees commonly cause extensive root damage (Hauer, 1994; Matheny and Clark, 1998; Jim, 2003)
- A single trench can remove 18% to about 50% of a tree root system, (Watson, 1998; Wajja-Musukwe et al., 2008)
- Root damage increased mortality over the next 8 years by 18-22% (Hauer et al., 1994)
- Visible symptoms may not occur until years after the damage (Watson, 1998; Despot and Gerhold, 2003; Wajja-Musuke et al., 2008)
- However, little attention has been given to the physiological reasons of tree decline

G. Watson

Cutting roots can lead to tree failure

Species tolerance to root loss (readapted from Costello and Jones, 2003)

Species	Common name	Tolerant	Intermediate	Intolerant
Acer negundo	Box Elder	Matheny and Clark, 1998		
Acer platanoides	Norway Maple	Carlson, 1999	Matheny and Clark, 1998; Phillips, 1999	
Acer saccharinum	Silver maple	Carlson, 1999; ; Phillips, 1999	Matheny and Clark, 1998	
Ailanthus altissima	Trees of heaven	Matheny and Clark, 1998		
Betula ssp	Birch			Matheny and Clark, 1998
Catalpa spp	Catalpa		Matheny and Clark, 1998	
Cedrus spp	Cedar	Matheny and Clark, 1998 ?		Ferrini, pract. Obs.
Cinnamomum camphora	Camphor			Carlson, 1999; Warriner, 2000
Eucalyptus spp	Eucalyptus		Matheny and Clark, 1998	Bernhardt and Swiecki, 1991
Fagus spp.	Beech			Matheny and Clark, 1998; Carlson, 1999
Ficus spp	Fig	Warriner, 2000		
Fraxinus spp	Ash	Matheny and Clark, 1998	Carlson, 1999	
Ginkgo biloba	Ginkgo	Matheny and Clark, 1998; Carlson, 1999; Phillips,1999		
Gymnocladus diiocus	Kentucky coffee tree		Matheny and Clark, 1998	

Species tolerance to root loss...continue (readapted from Costello and Jones, 2003)

Species	Common name	Tolerant	Intermediate	Intolerant
Juglans spp	Walnut spp			Matheny and Clark, 1998
Liquidambar styraciflua	Sweetgum		Matheny and Clark, 1998	Warriner, 2000
Liriodendron tulipifera	Tulip tree			Matheny and Clark, 1998; Phillips, 1999
Magnolia spp	Magnolia			Carlson, 1999
Pinus spp.	Italian stone pine			Bernhardt and Swiecki, 1991
Platanus spp	Sycamore	Carlson, 1999; Phillips,1999		
Populus spp.	Poplar	Matheny and Clark, 1998		
Pyrus calleryana	Callery Pear			Matheny and Clark, 1998; Carlson, 1999; Phillips, 1999
Quercus spp	Oak		Phillips,1999	Carlson, 1999; Phillips, 1999
Robinia pseudoacacia	Black locust	Matheny and Clark, 1998		
Salix spp.	Willow		Matheny and Clark, 1998; Phillips, 1999	
Tilia spp.			Matheny and Clark, 1998; Phillips, 1999	Carlson, 1999
Ulmus spp.	Elm	Matheny and Clark, 1998; Carlson, 1999		

The aims of this work were:

- to evaluate the long-term effects of two different levels of root severance on growth and physiology of two tree species supposed to differ in tolerance to root manipulation
- to evaluate the consequences of root severance on both theoretical (calculated) and measured (by pulling test) resistance to uprooting.

Methods: plant material

48 uniform European limes (*Tilia x europaea*) and 48 horsechestnuts (*Aesculus hippocastanum*) were planted in 2004 in a loam sandy soil and allowed to establish undisturbed for five years.

Tilia is supposed to better tolerate root manipulation than *Aesculus* (Matheny, 2005)

2004 2009

Methods: treatments

Control - C

Trenching on 1 side of the tree - **MD** Trenching on 2 sides of the tree - **SD**

Trenches (70 cm deep) were excavated 40 cm from the root flare in June 2009.

The experimental design was a randomized complete block with 4 blocks

Methods: measurements

GROWTH:

- Shoot growth
- Stem diameter growth:
- Tree height and canopy size:

PHYSIOLOGY:

- Leaf gas exchange:
- Maximal quantum yield of PSII photochemistry (Fv/Fm):
- Pre-dawn water potential (Ψ_w, MPa):

Methods: the pulling test

Pulling test was performed 3 weeks and 4 years after root severance as described in Sani et al. (2012). Two inclinometers were used to evaluate tree response to pulling in both tension and compression

RESULTS

The experiment was a randomized block design with 4 trees per species and treatment in each block and 4 blocks. All data were analysed with SPSS 20.0 statistical package

STEM DIAMETER

	Ø _{stem} before trenching (cm)	ΔØ year 1 (cm)	ΔØ year 2 (cm)	ΔØ year 3 (cm)	ΔØ year 4 (cm)
	A Shere &	Effect of roc	ot severance	10 1	
Control	9.7 a	1.4 a	1.3 a	1.1 a	1.8 a
MD	10.0 a	1.5 a	1.0 b	0.8 b	1.3 b
SD	8.9 a	0.9 b	0.9 b	0.8 b	1.3 b
Р	n.s.	**	**	*	*
Late .		Effect of	species	A NOT	
Tilia	10.0 a	1.5 a	1.1 a	0.9	1.5
Aesculus	9.0 b	1.0 b	1.2 a	1.0	1.4
Р	**	**	n.s.	n.s.	n.s.
Root severance x Species					
Р	n.s.	n.s.	n.s.	*	n.s.
Cont	Control - CTrenching on 1 side of the tree - MDTrenching on 2 of the tree - S		on 2 sides ree - SD		

SHOOT GROWTH

	Shoot growth year 1 (cm)	Shoot growth year 2 (cm)	Shoot growth year 3 (cm)	Shoot growth year 4 (cm)
Anna Maria	Eff	ect of root several	nce	
Control	40,1 a	24,49 a	38,02 a	30.0 a
MD	29,43 b	18,82 b	27,49 b	17.3 b
SD	27,91 b	15,22 b	21,01 c	14.8 b
Р	**	**	**	**
S. Antonio		Effect of species		1 100
Tilia	42,39 a	19,85	20,1 b	17.2 b
Aesculus	22,56 b	19,16	37,58 a	24.2 a
Р	**	n.s.	**	**
A ANA	Roc	ot severance x Spe	cies	
P	n.s.	*	*	*

 CO_2 assimilation is the amount of CO_2 assimilated from 1 m² of leaf area per unit time

Year 5

0,6

Year 1

Year 3

Year 2

Year 4

at values lower than 0.75

Physiological effects of root damage on young trees: take home message

•From a physiological point of view, root severance on young trees induced similar effects as a mild water stress, characterized by diffusive limitation to photosynthesis (metabolic limitation, typical of more severe stress, rarely occurred) and a moderate change in predawn water relation (data not shown).

• However, recovery is slower than most abiotic (mild) stresses, particularly in sensitive species such as horsechestnut

•Linden displayed greater physiological tolerance to root loss than horsechestnut

•It must be considered that experiment was performed during quite rainy years

Will severed trees stand up?

What about roots?

Bending moment (both traction and compression) to reach 0.2° change in inclination of the root plate, determined by pulling test

CONCLUSIONS

- The change in absorbing root surface caused by root loss induced a chronic mild water stress to trees, even in very rainy years, when water stress is very unlikely to happen on undamaged trees
- Recovery from this stress is extremely slow, because it depends on root regeneration, rather than on resource (water) supply
- Thus, root damage may act as a predisposing factor, which may lead to tree decline as secondary stressors occurs
- The uprooting resistance, both measured and calculated, was reduced by excavation, and recovery was very slow and incomplete in both species

LIMITATION TO THIS STUDY

Results of this study show the response of linden and horsechestnut to root damage. However, when extrapolating these findings to urban conditions, it must be considered that **trees were young (25-30 cm circumference at the beginning of the experiment)**. Older trees may show a different response and further research should be aimed at investigating the effects of trenching on mature and senescent trees.

A 3-year-study evaluating the effects of soil sealing on newly planted trees

IMPERVIOUS LAYER (i.e. Roads, Parking Lots, Rooftops)

NATIVE SOIL

From Elkin, 2011

Methods – Building the plots

24 plots (50 m² area) were built in November
2011

• Each plot was separated from the surrounding ones by polypropylene barriers, buried in the soil down to 70 cm.

• Two planting pits (1 m² area) were left unpaved in each plot

Plastic cylinder were put through the pavements, to allow direct soil measurements.
Some cylinders are near the planting pit, some other are buried 5 m away

 Pavement thickness was about 15 cm, including sub-grade, in all treatments

Methods - treatments

Impervious design: asphalt on a concrete sub-grade

> <u>Permeable desing</u>: curb on a crushed rock sub-grade

POROUS PAVEMENTS: The pavements itself is permeable to water across its entire structure

<u>Porous desing</u>: epoxy resin + even-graded inert on a crushed rock sub-grade

> <u>Control</u>: unpaved soil (chemical weeding used for weed control)

PERMEABLE PAVEMENTS:

Pavements made by impervious modular elements, but voids between elements allow water infiltration

Methods - species

Celtis australis L. - hackberry *Fraxinus ornus* L. – manna ash

• 24 plants per species (14-16 cm circumference; 2" caliper) were planted in March 2012, according to a randomized block design with 6 blocks

 Each tree was planted in a 1 m² planting hole, surrounded by 25 m² paved soil

Measurements: soil traits

- <u>Soil moisture (v/v)</u>, measured weekly at 20 cm (5 cm below sub-grade) and 45 cm (30 cm below sub-grade) depth, measured with FDR soil moisture probes
- <u>Soil temperature</u>, measured monthly at 25 cm depth using a temperature probe
- <u>Soil oxygen content</u> and <u>soil CO₂ efflux</u>, measured monthly using a soil respiration chamber

These parameters were measured both in the paved soil next to the planting pits and in the paved soil in the middle of the paved plot, not colonized by roots yet.

Measurements: plant traits

GROWTH:

Shoot growth (10 shoots per plant), measured at the end of the growing season in 2012, 2013, and 2014
DBH, measured at the end of the growing season in 2012, 2013, and 2014

PHYSIOLOGY:

 Leaf gas exchange (photosynthesis and transpiration) measured monthly during the growing season on 12 leaves per treatment and species using a IRGA
 Fv/Fm, measured on the same leaves as gas exchange using a portable fluorometer
 Pre-dawn and midday water potentials, measured using a Scholander-type pressure bomb

Results

SE.

Data were analysed using two-way ANOVA with SPSS statistical package (IBM)

Effects on soil - Temperature

During a snowfall, plots paved with asphalt are probably warmer

Effects on soil – soil CO₂ efflux

•According to Fick's Law, higher CO_2 efflux reflects a higher accumulation of inorganic C (CO_2) in the soil below impervious pavements

Permeable pavements are less permeable to CO₂ than porous ones

• DO NOT CONFOND INORGANIC CARBON WITH SOIL ORGANIC CARBON, which has been found to decrease in sealed soils (Wei et al., 2014)

Effects on soil - moisture

Effects on soil -Moisture in paved soils with no tree roots

WP and FC denote wilting point and field capacity

Variation in moisture through the year:

Asphalt: 8% Permeable: 7% Porous: 18% Control: 29%

Soil moisture a little deeper – soil without tree roots

Conclusions – Effects on soil

• Soil sealing induces 3-5 °C warming in the soil. The effect is likely due to impaired evaporation and can be mitigated using porous pavements.

• Because evaporation is reduced, <u>soil moisture increases with soil sealing</u>, being often above field capacity <u>in soils not planted with trees</u>. This was found in all paved soils. Trees can "bridge" the pavement and transpiration restores water cycle in urban areas.

 <u>CO₂ accumulates below impervious pavements</u>, potentially reducing root activity and growth. <u>Porous and, to a lesser extent, permeable pavements can mitigate</u> this effect

• Oxygen slightly declines below impervious pavements. Both porous and permeable pavements can be used to avoid such decline.

TAKE HOME MESSAGE:

differences among pavement types, no trees

PAVEMENT	INFILTRATION	EVAPORATION	WATER CONTENT at 20 cm	WATER CONTENT at 45 cm
Impervious	Low	Very Low	Slightly below FC	Slightly above FC
Permeable	Medium*	Low	Saturated	Saturated
Porous	High	Medium	75% available water	Saturated
Control	High	High	40% available water	At or slightly below FC

* May become clogged in about 3 years, decreasing infiltration rate by up to 83%

(Asaeda and Ka, 2000; Abbott et al., 2003; Collins et al., 2008; Morgenroth et al., 2013)

Effects on trees – photosynthesis

Different letters within the same sampling date indicate significant differences among treatments at P<0.05 using Duncan's MRT

Evidence for metabolic stress on PSII?

Fv/FmPlant health> 0,80Healthy0,70 - 0,80Slightly stressed< 0,7</td>Severely stressed

 No evidence of photoinhibition in hackberry

• Some in ashes growing in the impervious treatment, but only very mild stress and in the last two samplings

Effects on trees - DBH

P_{pavement} : n.s. P_{species}: ** P_{pavXsp}: * P_{time}: ** using repeated measures ANOVA

Conclusions – Effects on establishing trees

 Planting trees in paved soils is essential to maintain evapotranspiration in urban areas

- Pavements had limited effects on growth and physiology of newly planted trees
- Celtis is very tolerant to all types of soil cover, during establishment
- *Fraxinus* in impervious pavements displayed some signs of (very mild) stress since the third year from planting

Limitations

Future perspectives

Jack Kimmel Award: 10000 \$ Research Fellowship Grant: 100000 \$

The Research Project will continue until 2021 to evaluate the plant – soil – pavement interaction once trees are established:

- Root growth by multiple means (GPR, geoelectric, sismic waves, airspade)
- VOC emission as affected by soil sealing
- Plant physiology and biochemistry, with particular emphasis on root signaling (i.e. ABA) affecting photosynthetic yield

• Long term effects of pavements on soil physical, chemical and biological characteristics

3) Trees and senescence (managing renewal)

People must know the difference between senescent trees and veteran trees

Sustainable management also means, sometimes, renewal

Sometimes it's hard and painful to take the decision to remove old trees and planting young and healthy ones. If you decide to do so, you are not necessarily....

Threk the "Tree Ogre"

But you are doing it for the future generations

SPRING 2010

May 2013

SANG

May 2015

Green Infrastructures management

Green infrastructures management MUST BE planned in the long term and be very accurate because the "green parts" in the network are not made by spontaneous populations but cultivated plants and, as such, they MUST BE PROPERLY MANAGED

Order your copy today at www.routledge.com/9781138647282

Routledge Handbook of Urban Forestry

Routledge Handbook of

Routledge - April 2017 - 548 pages

HB: 9781138647282

£150.00 UK / \$240.00 US

eBook: 9781315627106

£49.99 UK/\$69.95 US

Urban Forestry

Edited by Francesco Ferrini, Cecil C. Konijnendijk van den Bosch, Alessio Fini

> More than half the world's population now lives in cities. Creating sustainable, healthy and aesthetic urban environments is therefore a major policy goal and research agenda. This comprehensive handbook provides a global overview of the state of the art and science of urban forestry.

It describes the multiple roles and benefits of urban green areas in general and the specific role of trees, including for issues such as air quality, human well-being and stormwater management. It reviews the various stresses experienced by trees in cities and tolerance mechanisms, as well as cultural techniques for either pre-conditioning or alleviating stress after planting. It sets out sound planning, design, species selection, establishment and management of urban trees. It shows that close interactions with the local urban communities who benefit from trees are key to success.

By drawing upon international state-of-art knowledge on arboriculture and urban forestry, the book provides a definitive overview of the field and is an essential reference text for students, researchers and practitioners.

Editors

Francesco Ferrini is Dean of the School of Agriculture and Professor of Arboriculture at the University of Florence, Italy.

Cecil C. Konijnendijk van den Bosch is Professor of Urban Forestry at the University of British Columbia, Canada.

Alessio Fini is a researcher in the Department of Production and Agri-Environment at the University of Florence, Italy.

20% Discount Available at www.routledge.com with code FLR40

Table of Contents

Part 1: Urban Forestry 1. Introduction Cecil C. Konijnendijk van den Bosch, Francesco Ferrini and Alessio Fini 2. The History of Trees in the City Richard J. Hauer, Robert W. Miller, Les P. Werner and Cecil C. Konijnendijk van den Bosch 3. Measuring and Monitoring Urban Trees and Urban Forests Justin Morgenroth and Johan Östber Part 2: Roles and Benefits of Urban Forests and Urban Trees 4. Ecosystem Services Cynnamon Dobbs, Maria Jose Martinez-Harms and Dave Kendal 5. Social Aspects of Urban Forestry and Metro Nature Kathleen Wolf 6. Impacts of Urban Forests on Physical and Mental Health and Wellbeing Matilda Annerstedt van den Bosch 7. Urban Forestry and Microclimate Simone Orlandini, Jennifer Vanos, Andreas Matzarakis, Luciano Massetti and Martina Petralli 8. Urban Forestry and Pollution Mitigation Arne Sæbø, Stanislaw W. Gawronski, Hans Martin Hanslin 9. Urban Forests and Biodiversity Emilio Padoa-Schioppa and Claudia Canedoli 10. Urban Forest Benefits in Developing and Industrializing Countries Fabio Salbitano, Simone Borelli, Michela Conigliaro, Noor Azlin Yahya, Giovanni Sanesi, Yujuan Chen and German Tovar 11. Assessing the Benefits and Economic Values of Trees David J. Nowak 12. Disservices of Urban Trees

12. Disservices of Urban Trees Jari Lyytimäki

Lyytimaki

Part 3: Urban Forest Landscapes: A Strategic Perspective 13. Strategic Green Infrastructure Planning and Urban Forestry Raffaele Lafortezza, Stephan Pauleit, Rieke Hansen, Giovanni Sanesi and Clive Davies

14. A Landscape and Urbanism Perspective on Urban Forestry Alan Simson

15. Urban Forest Governance and Community Engagement Stephen R. J. Sheppard, Cecil Konijnendijk van den Bosch, Owen Croy, Ana Macias and Sara Barron Part 4: Trees in the Urban Environment 16. Urban Tree Physiology: Methods and Tools Carlo Calfapietra, Gabriele Guidolotti, Galina Churkina and Ruediger Grote 17. Abiotic Stress Glvnn Percival

18. Biotic Factors: Pests and Diseases Michael Raupp and Paolo Gonthier 19. Constraints to Urban Trees and their Remedies in the Built Environment C.Y. Jim Part 5: Planting Sites: Analysis and Modification 20. Site Assessment: The Key to Sustainable Urban Landscape Establishment Nina Bassuk 21. Improving Soil Quality for Urban Forests Susan D. Day and J. Roger Harris 22. Design Options to Integrate Urban Tree Root Zones and Pavement Support within a Shared Soil Volume Jason Grabosky and Nina Bassuk Part 6: Selection of Planting Material, Planting Techniques and Establishment 23. Criteria in the Selection of Urban Trees for Temperate Urban Environments Henrik Sjöman, Andrew Hirons and Johanna Deak Sjöman 24. Selecting Nursery Products Daniel K. Struve 25. Planting Techniques Andrew K. Koeser and Robert J. Northrop 26. Navigating the Establishment Period: A Critical Period for New Trees J. Roger Harris and Susan D. Day Part 7: Managing Urban Forests and Urban Trees 27. Pruning Brian Kane 28. Irrigation of Urban Trees Alessio Fini and Cecilia Brunetti 29. Fertilization in Urban Landscape Cecilia Brunetti and Alessio Fini 30. Tree Biomechanics Frank W. Telewski and Karl J. Niklas 31. Tree Risk Assessment E. Thomas Smiley, Nelda P. Matheny and Sharon J. Lilly 32. Tools for Tree Risk Assessment Steffen Rust and Philip van Wassenaer 33. Management and Conservation of Ancient and Other Veteran Trees Neville Fay and Jill Butler 34. Urban Woodlands and their Management Peter N. Duinker, Susanna Lehvävirta, Anders Busse Nielsen and Sydney Toni

Visit our website for more information and online ordering: www.routledge.com

Visit our website for more information and online ordering: www.routledge.com

Save the date: ADVANCED COURSE ON BIOMECHANICS OF THE TREES Pistoia (ITALY), 5-9 June 2017

Speakers (English with simaltenuous translation in Italian=

All details within mid-february

BARRY GARDINER Emeritus Silviculturist (Research Fellow)

BRUNO MOULIA - Ressearch Director at INRA, 20 years experience in research on Plant Bio-Mechanics and Plant Developmental Biology

DUNCAN SLATER - Lecturer in Arboriculture, Myerscough College, Lancashire and a Chartered Forester. **BRIAN KANE** Associate Professor of Commercial Arboriculture at the University of Amherst Massachusetts **FRANK TELEWSKI** – Michigan State University

GILMAN, EDWARD F., University of Florida, Gainesville, United States

Topics

The dynamics of wind-tree interactions, mechanosensing, thigmomorphogenesis and wind acclimation, posture control vs gravity and growth (gravisensing, proprioception, mechanics and control of the bending movement, reaction woods.

Anatomy of branch junctions (to include bark-included junctions), Natural bracing in trees, UK arboriculture's assessment and treatment of branch junctions in trees, Thigmomorphogenesis in relation to branch junction and tree form

Basic tree biology- types of wood (juvenile vs mature; normal vs reaction (tension, compression, flexure); early vs latewood; non-porous vs porous; diffuse porous vs ring porous).

Introduction to tree biomechanics and hazard trees. Thigmomorphogenesis: Wind loading in trees, perception and acclimation.

Measuring young tree stability and lodging. Growing high quality root systems.

Can pruning reduce tree damage in storms. Pruning strategies leading to enhanced stability.

in cooperation with: SOI Italian Society of Horticulture SIA – Società Italiana di Arboricoltura

