

A SETS Perspective on Green Infrastructure and its Services

Nancy B. Grimm

Professor, Arizona State University
Co-Director, Urban Resilience to Extremes
Sustainability Research Network

UREX SRN

@DrNitrogen @URExSRN

With thanks: Mikhail Chester, Elizabeth Cook, Melissa Davidson, David Iwaniec, Yeowon Kim, Lauren McPhillips, Timon McPhearson

Social-Ecological-Technical Systems (SETS)

- What is SETS and why do we need this new concept?
- Infrastructure as SETS
- Services of SETS infrastructure
- SETS infrastructure as a resilient solution
- Application: building resilience in ten UREx network cities

(Depietri and McPhearson, in press)

Courtesy of Timon McPhearson

Anthropocene: an era of accelerating change

Number of loss events 1980-2013

Anthropocene: an era of accelerating change

The Challenge

- Urbanization and climate change are on a collision course and infrastructure is their battlefield!
- Infrastructure=Physical components of interrelated systems that provide commodities and services essential to enable, sustain, or enhance societal living conditions

Built (technological) components (infrastructure), their functions, and services provided

Ecosystem component	Function	Service
Transportation network	Facilitating human movements	Provision of roadways, railways, and transport systems
Water delivery infrastructure	Water fluxes	Provision of water to users
Stormwater infrastructure	Water fluxes	Protection from flooding
Wastewater infrastructure	Water and sewage fluxes; physical and biogeochemical transformations	Sanitation, removal of wastes, improvement of water quality
Energy supply infrastructure	Heating, cooling, other work	Regulation of microclimate, provision of power for manufacturing, etc.
Housing and buildings	Structure and architecture	Provision of habitat

(Grimm et al. 2016, UGEC Handbook)

Infrastructure challenges in the Anthropocene (*esp gray infrastructure)

- inflexible, rigid
- in poor condition (ASCE reports)
- interdependent
- design based on probabilities that are not stationary
- decisions about infrastructure have social and ecological impacts
- expensive and inaccessible for rapidly growing cities in poor countries

Courtesy of Mikhail Chester

Urban infrastructure: a defining characteristic of cities

Urban infrastructure: a defining characteristic of cities

Urban infrastructure: bridging social-ecological domains

Service	Built Infrastructure	Non-Urban Nature
Water supply	Dams, wells, interbasin transfers (pipes, canals)	Streams, springs, rivers, lakes
Water delivery	Canals, pipes, plumbing	Streams, springs, rivers; gravity
Water quality assurance	Water treatment plants	Protected lakes and reservoirs, wetlands, rivers
Shelter	Housing, other buildings	Caves, trees*
Food provision	Food processing and storage plants, delivery systems	Farms, orchards, animal populations
Transportation	Roads, canals, public transit lines	Rivers, lakes, oceans*, land routes* and human-powered or passive transport systems
Energy supply	Power grid, power plants, delivery systems	Fire and biofuel*, sun*, wind*
Protection from flooding	Sea walls, river levees, drainage canals	Coastal wetlands, dunes, floodplains, natural terraces
Sanitation, waste removal and processing	Sewers, wastewater treatment plants, solid waste incinerators	Rivers*, soils*
Recreation and experience of nature	Parks, zoos, gyms, gardens, swimming pools, cinema, television, virtual reality	Forests, deserts, grasslands, rivers, lakes, streams, beaches, etc.

CAP LTER New Conceptual Framework

Importance of infrastructure in bridging social and biophysical domains

Central Arizona – Phoenix Long-Term Ecological Re

Courtesy of Dan Childers et al.

Extreme Events: the New Normal

- Immediate (local) <u>impacts</u>: ecological, social, infrastructural
- Impacts on supply chains/external systems Social/political strain from impacts <u>Responses/solutions</u>
 - Must be flexible, account for an uncertain future Should incorporate social, ecological, technological elements – SETS!

Resilience: an appropriate theoretical basis

 Resilience is 'the capacity of individuals, communities and systems to survive, adapt, and grow in the face of stress and shocks, and even transform when conditions require it'

- The Rockefeller Foundation, 2009, Building Climate Change Resilience

- Qualities of resilient systems Increasing resilience Reflectiveness Change required Resourcefulness Transforming Robustness Adapting Redundancy Surviving Flexibility Business as usua THE Inclusiveness Integration Likelihood and extent of extreme event
 - The Rockefeller Foundation, 2014, Resilient Cities Framework

Resilient Infrastructure as SETS

Extreme Events

Capital inputs Energy, extracted materials Raw materials, land, ecosystems Labor, knowledge, data, institutions

> Technological Ecological Social

SETS Resilient Infrastructure

Services provided Disservices managed Ecosystem services captured Ecosystem services delivered Jobs created and maintained Outcomes Risk management, persistence, adaptation, transformation Ecological changes in local and distant systems (managed, maintained, transformed...) Learning, altered expectations, reorganization, sense of place, transformation

Developed from discussions in SETS WG of UREx SRN

A new design paradigm: "safe-to-fail"

(after Park, Seager et al. 2012 Risk Analysis)

	Risk management (traditona)	Resilience (ecological)
Design principles	Status quo: avoid failure or transformative change	Unknown hazards ok; adapt w/o loss of function. Some failure ok
Design objectives	Minimize probability of failure, allow rare catastrophic consequences (long RT)	Minimize consequence of failure, more frequent failure (short RT)
Design strategies	Armoring; strengthening; resistance; oversizing (gray)	Diversity, adaptability, regrowth flexibility, renewability, innovation
Response coordination	Centralized, hierarchical, coordinated per plans	Decentralized, autonomous response

CoastalExtremeUrbanFloodingHeatDroughtflooding

The UREx SRN

Portland, OR (PSU) Phoenix, AZ (ASU) Hermosillo, Mexico (ITSON) Mexico City, Mexico (UNAM) Valdivia, Chile (UACh) San Juan, PR (UPR) Miami, FL (FIU, Clark U) Baltimore, MD (Cary Inst, UMBC) New York, NY (New School, NYU, CUNY) Syracuse, NY (Syracuse U)

Ten cities in Latin America & continental US 17 institutions >90 participants 95 practitioners 15 grad fellows 8 postdocs \$12M funding 2015-2021

Urban Resilience to Extremes Sustainability Research Network

Our vision

A network of collaborating interdisciplinary scientists and practitioners from diverse world cities working together to promote, design, and implement urban infrastructure that is resilient in the face of future extreme events, provides ecosystem services, improves social well being, and exploits new technologies in ways that benefit all segments of urban populations.

REx SRN Urban Resilience to Extremes Sustainability Research Network

Baltimore and Phoenix contrasts

- Caution in assuming relationships based on betterstudied mesic systems
- Context matters! (geographical, physical, ecological, social)

Inequality in access to green space

Green Space vs Median Income by Block Group

Public transit and flooding in Hermosillo

Phoenix: from fail safe to safe-to-fail

- Indian Bend Wash watershed, Scottsdale
- Changes in nutrient retention & hydrologic connectivity are closely tied to changes in stormwater infrastructure
- A changing vision:

Phoenix: from fail safe to safe-to-fail

- Indian Bend Wash watershed, Scottsdale
- Changes in nutrient retention & hydrologic connectivity are closely tied to changes in stormwater infrastructure

Baltimore: Can you find the detention basins in this suburban landscape?

1/2 mile x 3/4 mile area

Source: Neil Bettez

Baltimore: Can you find the detention basins in this suburban landscape?

1/2 mile x 3/4 mile area

Source: Neil Bettez

MAP - ASSESS

Stormwater Management Structures in the Gwynns Falls (Baltimore)

	Туре	Structure Type (TN removal efficiency)	Count	Percent of total	Percent of Drainage Area	Area weighted removal	Type of Structure
S Aller	Δ	Wet Ponds and Wetlands (30%)	23	3%	1	0 33	shallow marsh
- A V . (* 17			20	070	-	0.00	Retention Pond
							Bay Separator
		Dry Dotontion & Hydrodynamic					Oil & Grit Separator
	B	structure (5%)	275	33%	10	0.48	Still Basin
							Underground storage
NON A PRODUCTION							Detention Pond
	с	Dry Extended Detention (30%)	272	33%	8	2.39	Dry Ext Detention Pond
		, , , , , , , , , , , , , , , , , , ,					Ext Det Pond
							Porous Pavement
State of the state of the		Infiltration Drastiana (E0%)	00	110/	0.24	0.1.4	Swale
		Initiation Practices (50%)	90	1170	0.34	0.14	Infiltration Trench
							Infiltration basin
Station of the second							Dry Well
	E	Filtering Practices (40%)	167	20%	1.79	0.72	BIO-Retention
Received and the							Sand filter
A NORTH							

(Stormwater workgroup: BMP Pollutant Removal Efficiencies.PDF)

MAP - ASSESS

Courtesy of Peter Groffman, Neil Bettez

New York: Projecting future changes

Valdivia Flooding:

Can we incorporate SETS thinking into the assessment of vulnerability?

0 0.5 1 2 Kilometers

Ν

New York COMBINING URBAN SOCIAL, ECOLOGICAL, AND TECHNICAL-INFRASTRUCTURAL SYSTEM (SETS) DATA

HEAT VULNERABILITY

New York: participatory visioning

Miami-Dade County OCTOBER 7, 2014

Report: Tidal flooding to be more frequent in Miami, Key West as seas rise

Hiami Herald

Sign In | Subscribe

HIGHLIGHTS

A new look at the nation's climate concludes that flooding in Miami and Key West will happen more often and more severely as seas continue to rise.

San Juan: building resilience but avoiding gentrification

Phoenix: How can we build resilience to heat?

EXTREME HEAT & UHI

VEGETATION & GI

Annual count of days when max temperature > 100F RCP8.5: 2036-2065

Vegetation cover-heat relationship

Landscape Ecol (2016) 31:745-760

Jenerette et al. 2016

^{0 125250 500} Meters

People are differentially affected by urban heat

	Exposure to High Heat				
US Census	Low	Medium	High		
N Neighborhoods	15	10	15		
Population/mi ²	3,569	3,757	7,550		
Income	\$71,903	\$62,669	\$38,621		
% minority	20.7	25.9	44.7		
% over age 65	9.8	20.4	17.5		

Spatial heterogeneity in neighborhood vegetation explains much of the variance in heat exposure risk

Ruddell et al. 2012

Co-Production with Communities

- Input from community members from outset
- Investigate local knowledge networks and decision processes
- Examine vulnerability and resilience within local context
- Scenarios workshops to share visions and propose interventions

D. Iwaniec et al., in progress

Adaptive Drought: "The True Cost of Water"

- Rainwater & stormwater harvesting
- Urban infill & increase density
- Large → smaller scale agriculture
- Shift in energy sourcing
- Education about water conservation

Adaptive Drought: "The True Cost of Water"

- Rainwater & stormwater harvesting
- Urban infill & increase density
- Large → smaller scale agriculture
- Shift in energy sourcing
- Education about water conservation

VISUALIZE

Transformative: "Emerald City / Necklace"

- Repurposed freeways; reduced reliance on cars
- Hubs where canals & freeways cross
- Concentrated city centers
- Water harvesting to support green hubs
- Social change in sense of place priorities

Transformative: "Emerald City / Necklace"

- Repurposed freeways; reduced reliance on cars
- Hubs where canals & freeways cross
- Concentrated city centers
- Water harvesting to support green hubs
- Social change in sense of place priorities

Visualization and Pilot Interventions

- Infrastructure defining characteristic – bridging social-ecological systems
- SETS solutions needed in uncertain world of the Anthropocene
- SETS solutions leverage services, improve well-being
- Resilience-building
- Technologically advanced
- Equitable and fair
- Context-appropriate

- UREx SRN –comparative urban research, network of city researchers and practitioners
- Investigating SETS solutions in the face of extreme events
- Co-producing visions for resilient futures with city practitioners
- Models, visualizations, implementation
- Transdisciplinary training

UREX SRN

THANKS FOR YOUR ATTENTION!

- Infrastructure defining characteristic – bridging social-ecological systems
- SETS solutions needed in uncertain world of the Anthropocene
- SETS solutions leverage services, improve well-being
- Resilience-building
- Technologically advanced
- Equitable and fair
- Context-appropriate

- UREx SRN –comparative urban research, network of city researchers and practitioners
- Investigating SETS solutions in the face of extreme events
- Co-producing visions for resilient futures with city practitioners
- Models, visualizations, implementation
- Transdisciplinary training